Synthesis and Structures of Sterically Crowded Aryloxide-substituted Aluminium Chloride \dagger

Stephan Schulz, Herbert W. Roesky,* Mathias Noltemeyer and Hans-Georg Schmidt Institut für Anorganische Chemie der Universität Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany

The reaction of AlCl_{3} with $\mathrm{Li}\left(\mathrm{OR}^{\prime}\right) \cdot \mathrm{Et}_{2} \mathrm{O}\left(\mathrm{R}^{\prime}=\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{Bu}_{3}-2,4,6\right)$ in diethyl ether gave $\mathrm{Al}\left(\mathrm{OR}^{\prime}\right) \mathrm{Cl}_{2} \cdot \mathrm{Et}_{2} \mathrm{O} 1$. a monomeric aryloxide compound of aluminium. Its reaction with 2 equivalents of potassium gave elemental aluminium and $\left[\mathrm{Al}(\mathrm{OEt})\left(\mathrm{OR}^{\prime}\right)_{2}\right]_{2} 2$ containing a four-membered $\mathrm{Al}_{2} \mathrm{O}_{2}$ ring. Compound 1 crystallizes in the monoclinic space group $P 2_{1} / c$ with $a=10.692(2), b=21.825(4), c=11.683(2) \AA$ and $\beta=115.49(3)^{\circ}$ and compound 2 in the space group $P^{\overline{1}}$ with $a=10.227(2), b=10.966(2)$, $c=18.493(4) \AA, \alpha=101.13(3), \beta=97.63(3)$ and $\gamma=115.29(3)^{\circ}$.

Aluminium alkyl reagents react with phenols to give aluminium aryloxide compounds. ${ }^{1}$ In general these compounds exist as dimers or trimers. Only with sterically demanding phenols such as $\mathrm{HOC}_{6} \mathrm{H}_{3} \mathrm{Bu}^{1}-2,6$ is the resulting aluminium aryloxide monomeric. ${ }^{2}$ These monomeric species are highly regio- and stereo-selective in organic syntheses ${ }^{3,4}$ and they have found application in the preparation of new Ziegler-Natta catalysts with high selectivity and stereospecificity in the polymerization of propene. ${ }^{5-8}$ To the best of our knowledge, there is only one structurally characterized monomeric compound known, $\mathrm{Al}(\mathrm{OR}) \mathrm{Cl}_{2} \cdot \mathrm{Et}_{2} \mathrm{O}\left(\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{Bu}^{1}{ }_{2}-2,6-\mathrm{Me}-4\right)^{9}$. In this paper we describe a facile route to monomeric $\mathrm{Al}\left(\mathrm{OR}^{\prime}\right) \mathrm{Cl}_{2} \cdot \mathrm{Et}_{2} \mathrm{O} 1\left(\mathrm{R}^{\prime}=\right.$ $\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{Bu}^{1}-2,4,6$) and its chemical behaviour. Reaction of 1 with two equivalents of potassium leads to the formation of $\left[\mathrm{Al}(\mathrm{OEt})\left(\mathrm{OR}^{\prime}\right)_{2}\right]_{2} \mathbf{2}$. Compounds $\mathbf{1}$ and $\mathbf{2}$ are characterized by NMR studies and X-ray crystallography.

Results and Discussion

The reaction of AlCl_{3} with Li-containing compounds often leads to the formation of a mixture of mono-, di- and trisubstituted derivatives. Only with sterically demanding reagents it is possible to synthesize monosubstituted compounds. We were interested in preparing a monosubstituted organoaluminium dichloride with a strong bond between aluminium and the organic substituent and $\mathrm{OC}_{6} \mathrm{H}_{2} \mathrm{Bu}^{\prime}-2,4,6$ ($O R^{\prime}$) was selected as the ligand. A few aluminium aryloxides formed from the reaction of AlMe_{3} and alcohols are known. ${ }^{1}$ However only one monomeric example of the type $\mathrm{Al}(\mathrm{OR}) \mathrm{Cl}_{2}$ is described in the literature, i.e. $\mathrm{Al}(\mathrm{OR}) \mathrm{Cl}_{2} \cdot \mathrm{Et}_{2} \mathrm{O}(\mathrm{R}=$ $\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{Bu}^{\mathrm{t}}-2,6-\mathrm{Me}-4$), which is prepared by the reaction of 2 equivalents of $\mathrm{SnMe}_{3} \mathrm{Cl}$ with $\mathrm{AlMe}_{2}(\mathrm{OR}) \cdot \mathrm{Et}_{2} \mathrm{O}$ or $\mathrm{AlEt}_{2}-$ (OR). $\mathrm{Et}_{2} \mathrm{O}$. ${ }^{9}$
The interaction of AlCl_{3} with 1 equivalent of $\mathrm{Li}\left(\mathrm{OR}^{\prime}\right) \cdot \mathrm{Et}_{2} \mathrm{O}$ results in the nearly quantitative formation of $\mathrm{Al}\left(\mathrm{OR}^{\prime}\right) \mathrm{Cl}_{2} \cdot \mathrm{Et}_{2} \mathrm{O}$ 1 [equation (1)]. Compound $\mathbf{1}$ is an air- and moisture-sensitive

$$
\begin{equation*}
\mathrm{AlCl}_{3}+\mathrm{Li}\left(\mathrm{OR}^{\prime}\right) \cdot \mathrm{Et}_{2} \mathrm{O} \longrightarrow \mathrm{Al}\left(\mathrm{OR}^{\prime}\right) \mathrm{Cl}_{2} \cdot \mathrm{Et}_{\mathbf{2}} \mathrm{O}+\mathrm{LiCl} \tag{1}
\end{equation*}
$$

colourless solid but stable under an inert gas atmosphere.
Crystals of compound 1 were formed from a solution in hexane at $0^{\circ} \mathrm{C}$. Its molecular structure has been determined by X-ray crystallography and is shown in Fig. 1; selected bond

[^0]

Fig. 1 Molecular structure of $\mathrm{Al}\left(\mathrm{OR}^{\prime}\right) \mathrm{Cl}_{2} \cdot \mathrm{Et}_{2} \mathrm{O}$ 1. Thermal ellipsoids are shown at the 50% level and hydrogen atoms have been omitted for clarity

Table 1	Selected bond lengths (\AA) and angles $\left(^{\circ}\right)$ in $\mathrm{Al}\left(\mathrm{OR}^{\prime}\right) \mathrm{Cl}_{2} \cdot \mathrm{Et}_{2} \mathrm{O}$		
$\mathbf{1}$			
$\mathrm{Al}-\mathrm{O}(1)$	$1.699(2)$	$\mathrm{Al}-\mathrm{O}(20)$	$1.861(2)$
$\mathrm{Al}-\mathrm{Cl}(1)$	$2.132(1)$	$\mathrm{Al}-\mathrm{Cl}(2)$	$2.125(1)$
$\mathrm{O}(1)-\mathrm{C}(11)$	$1.383(3)$	$\mathrm{O}(20)-\mathrm{C}(21)$	$1.478(3)$
$\mathrm{O}(20)-\mathrm{C}(23)$	$1.479(3)$		
$\mathrm{O}(1)-\mathrm{Al}-\mathrm{O}(2)$	$105.9(8)$	$\mathrm{O}(1)-\mathrm{Al}-\mathrm{Cl}(2)$	$117.2(7)$
$\mathrm{O}(20)-\mathrm{Al}-\mathrm{Cl}(2)$	$105.0(6)$	$\mathrm{O}(1)-\mathrm{Al}-\mathrm{Cl}(1)$	$115.9(7)$
$\mathrm{O}(20)-\mathrm{Al}-\mathrm{Cl}(1)$	$100.6(7)$	$\mathrm{Cl}(2)-\mathrm{Al}-\mathrm{Cl}(1)$	$110.1(4)$
$\mathrm{C}(11)-\mathrm{O}(1)-\mathrm{Al}$	$152.7(2)$	$\mathrm{C}(21)-\mathrm{O}(20)-\mathrm{C}(23)$	$115.1(2)$
$\mathrm{C}(21)-\mathrm{O}(20)-\mathrm{Al}$	$125.6(2)$	$\mathrm{C}(23)-\mathrm{O}(20)-\mathrm{Al}$	$117.5(1)$

lengths and angles are given in Table 1. The structure shows discrete monomeric units of 1 . The $\mathrm{Al}-\mathrm{Cl}$ bond distances of $2.125(1)$ and $2.132(1) \AA$ are slightly longer than those in $\mathrm{Al}(\mathrm{OR}) \mathrm{Cl}_{2} \cdot \mathrm{Et}_{2} \mathrm{O}[2.104(2) \text { and } 2.110(2) \AA]^{9}$ but within the range of terminal Cl atoms. The other bond lengths and angles are nearly identical to those found in $\mathrm{Al}(\mathrm{OR}) \mathrm{Cl}_{2} \cdot \mathrm{Et}_{2} \mathrm{O}$. The structure demonstrates the effective shielding of the two Bu^{\prime} groups.

Recently we reported on the successful reduction of $\mathrm{Al}\left(\eta^{5}-\right.$ $\left.\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Cl}_{2}$ to an aluminium(I) compound ${ }^{10}$ and we were therefore interested in extending this type of reaction to compound 1. However, in general, organoaluminium dichlorides react with
reducing agents under disproportionation to give elemental aluminium and di- or tri-substituted derivatives of the type $\mathrm{AlL}_{2} \mathrm{Cl}$ and AlL_{3}, respectively. ${ }^{11}$

The reaction of 1 with 2 equivalents of potassium in toluene leads to a brown oil after removal of solvent. Compound $\left[\mathrm{Al}(\mathrm{OEt})\left(\mathrm{OR}^{\prime}\right)_{2}\right]_{2} 2$ was obtained after two months of crystallisation in 8% yield [equation (2)]. Its molecular

$$
2 \mathrm{Al}\left(\mathrm{OR}^{\prime}\right) \mathrm{Cl}_{2} \cdot \mathrm{Et}_{2} \mathrm{O}+4 \mathrm{~K} \xrightarrow[{\left[\mathrm{Al}(\mathrm{OEt})\left(\mathrm{OR}^{\prime}\right)_{2}\right]_{2}}]{ }+4 \mathrm{KCl}
$$

structure has been determined by X-ray crystallography and is shown in Fig. 2; selected bond lengths and angles are given in Table 2. The central unit in 2 is a four-membered $\mathrm{Al}_{2} \mathrm{O}_{2}$ ring with an inversion centre within the ring giving a planar ring system. An ethyl group is bound to each oxygen of the ring. Clearly the formation of compound 2 is accomplished under the cleavage of an ether molecule. The Al-O bond lengths [1.839(2)
and $1.850(2) \AA$] and $\mathrm{Al}-\mathrm{O}-\mathrm{Al}$ and $\mathrm{O}-\mathrm{Al}-\mathrm{O}$ bond angles $\left[102.4(1)-77.7(1)^{\circ}\right]$ are within the ranges reported for $\mathrm{Al}_{2} \mathrm{O}_{2}$ ring systems. ${ }^{12,13}$ As expected the Al -O distances from $\mathrm{OC}_{6} \mathrm{H}_{2} \mathrm{Bu}^{1}-2,4,6$ are shorter than those within the $\mathrm{Al}_{2} \mathrm{O}_{2}$ ring, but they are longer than those in 1 or in $\mathrm{AlMe}(\mathrm{OR})_{2}$ [average $1.686(2) \AA] .{ }^{14}$ The reasons are obviously the higher steric crowding in 2 and the larger Al-O-C angle in 1 [152.7(2)] ${ }^{\circ}$ compared to 2 [142.3(2) ${ }^{\circ}$. The Al-O-C unit therefore has more sp character in 1 and more sp^{2} character in 2. Consequently the Al-O bond distances in monomeric aluminium compounds are found to be shorter than those in dimeric systems.

The formation of $\left[\mathrm{Al}(\mathrm{OEt})\left(\mathrm{OR}^{\prime}\right)_{2}\right]_{2} 2$ from the reaction of $\mathrm{Al}\left(\mathrm{OR}^{\prime}\right) \mathrm{Cl}_{2} \cdot \mathrm{Et}_{2} \mathrm{O} 1$ with 2 equivalents of potassium shows that aluminium aryloxides react in the same manner as the corresponding aluminium alkyl and aryl derivatives. Proton NMR studies of the oily residue indicate that it is a mixture of several compounds possibly containing a reduced form of aluminium. Further investigations are underway.

Table 2	Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ in $\left[\mathrm{Al}(\mathrm{OEt})\left(\mathrm{OR}^{\prime}\right)_{2}\right]_{2}$		
$\mathbf{2}$			
$\mathrm{Al}(1)-\mathrm{O}(1)$	$1.713(2)$	$\mathrm{Al}(1)-\mathrm{O}(2)$	$1.723(2)$
$\mathrm{Al}(1)-\mathrm{O}(3)$	$1.839(2)$	$\mathrm{Al}(1)-\mathrm{O}(3 \mathrm{aa})$	$1.850(2)$
$\mathrm{Al}(1)-\mathrm{Al}(1 \mathrm{a})$	$2.874(2)$	$\mathrm{Al}(1 \mathrm{a})-\mathrm{O}(3)$	$1.850(2)$
$\mathrm{O}(1)-\mathrm{C}(11)$	$1.382(4)$	$\mathrm{O}(2)-\mathrm{C}(21)$	$1.396(4)$
$\mathrm{O}(3)-\mathrm{C}(1)$	$1.460(4)$		
$\mathrm{O}(1)-\mathrm{Al}(1)-\mathrm{O}(2)$	$118.6(1)$	$\mathrm{O}(1)-\mathrm{Al}(1)-\mathrm{O}(3)$	$105.8(1)$
$\mathrm{O}(2)-\mathrm{Al}(1)-\mathrm{O}(3)$	$122.6(1)$	$\mathrm{O}(1)-\mathrm{Al}(1)-\mathrm{O}(3 \mathrm{aa})$	$120.7(1)$
$\mathrm{O}(2)-\mathrm{Al}(1)-\mathrm{O}(3 \mathrm{am})$	$105.7(1)$	$\mathrm{O}(3)-\mathrm{Al}(1)-\mathrm{O}(3 \mathrm{aa})$	$77.7(1)$
$\mathrm{Al}(1)-\mathrm{O}(1)-\mathrm{C}(11)$	$142.3(2)$	$\mathrm{Al}(1)-\mathrm{O}(2)-\mathrm{C}(21)$	$142.7(2)$
$\mathrm{Al}(1)-\mathrm{O}(3)-\mathrm{C}(1)$	$128.6(2)$	$\mathrm{Al}(1 \mathrm{a})-\mathrm{O}(3)-\mathrm{C}(1)$	$125.7(2)$

Fig. 2 Molecular structure of $\left[\mathrm{Al}(\mathrm{OEt})\left(\mathrm{OR}^{\prime}\right)_{2}\right]_{2}$ 2. Thermal ellipsoids are shown at the 50% level and hydrogen atoms have been omitted for clarity

Table 3 Crystallographic details for $\mathrm{Al}\left(\mathrm{OR}^{\prime}\right) \mathrm{Cl}_{2} \cdot \mathrm{Et}_{2} \mathrm{O} 1$ and $\left[\mathrm{Al}(\mathrm{OEt})\left(\mathrm{OR}^{\prime}\right)_{2}\right]_{2} 2\left(\mathrm{R}^{\prime}=\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{Bu}_{3}^{\prime}-2,4,6\right)$

	1	2
Empirical formula	$\mathrm{C}_{22} \mathrm{H}_{39} \mathrm{AlCl}_{2} \mathrm{O}_{2}$	$\mathrm{C}_{76} \mathrm{H}_{126} \mathrm{Al}_{2} \mathrm{O}_{6}$
M	433.41	118.73
Crystal size/mm	$0.60 \times 0.50 \times 0.50$	$0.50 \times 0.50 \times 0.50$
Crystal system	Monoclinic	Triclinic
Space group	$P 2_{1} / \mathrm{c}$	$P \mathrm{~T}$
a / \AA	10.692(2)	10.227(2)
b / \AA	21.825(4)	10.966(2)
c / \AA	11.683(2)	18.493(4)
$\alpha /{ }^{\circ}$	-	101.13(3)
$\beta /^{\circ}$	115.49(3)	97.63(3)
$\gamma /{ }^{\circ}$	-	115.29(3)
U / \AA^{3}	2460.9(8)	1785.0(6)
Z	4	1
$D_{\mathrm{c}} / \mathrm{Mg} \mathrm{m}^{-3}$	1.170	1.107
μ / mm^{-1}	0.313	0.090
$F(000)$	936	656
2θ range/ ${ }^{\circ}$	7-45	7-45
Index ranges	$-11 \leqslant h \leqslant 10$	$-10 \leqslant h \leqslant 3$
(partial)	$-23 \leqslant k \leqslant 23$	$-10 \leqslant k \leqslant 11$
	$-11 \leqslant l \leqslant 12$	$-19 \leqslant l \leqslant 19$
Reflections collected	7587	4562
Independent reflections	3220	4553
Data/restraints/parameters	3218/0/245	4549/0/380
Goodness of fit on F^{2}	0.963	1.014
Final R indices [$I>2 \sigma(I)]$		
R1	0.0424	0.0712
wR2*	0.1146	0.1846
R indices (all data)		
$R 1$	0.0500	0.0833
wR2*	0.1265	0.2064
Largest difference peak, hole/e nm^{-3}	538, -393	541, -745

${ }^{*} w R 2=\left\{\left[\Sigma w\left(F_{\mathrm{o}}{ }^{2}-F_{\mathrm{c}}{ }^{2}\right)^{2}\right] / \Sigma w F_{\mathrm{o}}{ }^{4}\right\}^{\frac{1}{2}}$ where $w^{-1}=\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(a P)^{2}+b P\left[P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3\right]$ and $a=0.0800,0.1400, b=1.7500,2.1000$ for 1 and 2 respectively.

Table 4 Atomic coordinates $\left(\times 10^{4}\right)$ for 1

Atom	x	y	z
Al	$-812(1)$	$632(1)$	$1941(1)$
$\mathrm{Cl}(1)$	$1308(1)$	$839(1)$	$2439(1)$
$\mathrm{Cl}(2)$	$-2062(1)$	$890(1)$	$31(1)$
$\mathrm{O}(1)$	$-1400(2)$	$821(1)$	$3035(2)$
$\mathrm{C}(11)$	$-2208(3)$	$1163(1)$	$3456(2)$
$\mathrm{C}(12)$	$-3451(3)$	$907(1)$	$3409(2)$
$\mathrm{C}(13)$	$-4261(3)$	$1273(1)$	$3801(2)$
$\mathrm{C}(14)$	$-3902(3)$	$1867(1)$	$4264(2)$
$\mathrm{C}(15)$	$-2658(3)$	$2090(1)$	$4343(2)$
$\mathrm{C}(16)$	$-1775(3)$	$1753(1)$	$3967(2)$
$\mathrm{C}(121)$	$-3928(3)$	$246(1)$	$2952(2)$
$\mathrm{C}(122)$	$-4253(3)$	$175(1)$	$1539(2)$
$\mathrm{C}(123)$	$-2829(3)$	$-218(1)$	$3769(3)$
$\mathrm{C}(124)$	$-5265(3)$	$74(1)$	$3062(3)$
$\mathrm{C}(141)$	$-4865(3)$	$2231(1)$	$4691(3)$
$\mathrm{C}(142)$	$-4980(4)$	$1893(2)$	$5799(3)$
$\mathrm{C}(143)$	$-4341(3)$	$2880(1)$	$5124(4)$
$\mathrm{C}(144)$	$-6308(3)$	$2284(1)$	$3586(3)$
$\mathrm{C}(161)$	$-395(3)$	$2044(1)$	$4109(2)$
$\mathrm{C}(162)$	$-106(3)$	$2667(1)$	$4796(3)$
$\mathrm{C}(163)$	$-441(3)$	$2178(1)$	$2789(2)$
$\mathrm{C}(164)$	$831(3)$	$1632(1)$	$4910(2)$
$\mathrm{O}(20)$	$-766(2)$	$-221(1)$	$1918(2)$
$\mathrm{C}(21)$	$-1327(3)$	$-608(1)$	$768(2)$
$\mathrm{C}(22)$	$-2144(3)$	$-1139(1)$	$899(3)$
$\mathrm{C}(23)$	$190(3)$	$-535(1)$	$3091(2)$
$\mathrm{C}(24)$	$1413(3)$	$-823(1)$	$2984(3)$

Experimental

General.-All solvents were dried, distilled and degassed prior to use. Elemental analyses were performed at this institute. Melting points were determined in sealed capillaries and are uncorrected. The IR spectra ($4000-300 \mathrm{~cm}^{-1}$) were recorded on a Bio-Rad Digilab FTS-7 instrument as Nujol mulls and ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra ($\mathrm{C}_{6} \mathrm{D}_{6}$) on Bruker AM 250 spectrometers. Chemical shifts are given versus internal $\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{H}\left(\delta 7.15,{ }^{1} \mathrm{H}\right)$ and $\mathrm{C}_{6} \mathrm{D}_{6}\left(\delta 128,{ }^{13} \mathrm{C}\right)$, respectively. Mass spectra [EI (electron impact)] were recorded on Varian MAT CH5 and Finnigan MAT System 8230 spectrometers. The synthesis of $\mathrm{Li}\left(\mathrm{OR}^{\prime}\right) \cdot \mathrm{Et}_{2} \mathrm{O}$ was carried out according to the literature method. ${ }^{15}$

Preparation of $\mathrm{Al}\left(\mathrm{OR}^{\prime}\right) \mathrm{Cl}_{2} \cdot \mathrm{Et}_{2} \mathrm{O}$ 1.-To a mixture of AlCl_{3} $(1.08 \mathrm{~g}, 8 \mathrm{mmol})$ and $\mathrm{Li}\left(\mathrm{OR}^{\prime}\right) \cdot \mathrm{Et}_{2} \mathrm{O}(2.74 \mathrm{~g}, 8 \mathrm{mmol})$ was added $\mathrm{Et}_{2} \mathrm{O}\left(70 \mathrm{~cm}^{3}\right)$ and the suspension stirred at room temperature for 20 h . Then the solvent was removed in vacuo and the resulting yellow solid extracted with hexane $\left(60 \mathrm{~cm}^{3}\right)$. The solvent was reduced to $35 \mathrm{~cm}^{3}$ and 1 crystallized at $0^{\circ} \mathrm{C}$ in 92% yield (3.19 g), m.p. $118^{\circ} \mathrm{C}$ (Found: C, 62.2; H, 9.0. Calc. for $\mathrm{C}_{22} \mathrm{H}_{39} \mathrm{AlCl}_{2} \mathrm{O}_{2}: \mathrm{C}, 63.2 ; \mathrm{H}, 9.42 \%$). IR (Nujol): v 1244s, 1147 s , $1124 \mathrm{vs}, 1006 \mathrm{vs}, 940 \mathrm{~s}, 891 \mathrm{vs}, 873 \mathrm{w}, 768 \mathrm{vs}, 618 \mathrm{w}, 561 \mathrm{~s}, 522 \mathrm{vs}$, $441 \mathrm{vs}, 401 \mathrm{w}$ and $345 \mathrm{~s} \mathrm{~cm}^{-1}$. NMR: $\delta_{\mathrm{H}}\left(250 \mathrm{MHz}, 25^{\circ} \mathrm{C}, \mathrm{C}_{6} \mathrm{D}_{6}\right.$, SiMe_{4}), $0.65\left(6 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2} \mathrm{Me},{ }^{3} J_{\mathrm{HH}} 7.0\right), 1.37\left(9 \mathrm{H}, \mathrm{s}, p-\mathrm{Bu}^{1}\right), 1.64$ ($18 \mathrm{H}, \mathrm{s}, o-\mathrm{Bu}^{1}$), $3.62\left(4 \mathrm{H}, \mathrm{q}, \mathrm{CH}_{2} \mathrm{Me},{ }^{3} J_{\mathrm{HH}} 7.0 \mathrm{~Hz}\right), 7.53(2 \mathrm{H}, \mathrm{s}$, $\mathrm{C}_{6} \mathrm{H}_{2}$); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, 25^{\circ} \mathrm{C}, \mathrm{C}_{6} \mathrm{D}_{6}, \mathrm{SiMe}_{4}\right.$), 12.8 (Me, OEt), 31.9 $\left(\mathrm{Me}, o-\mathrm{Bu}^{1}\right), 32.3$ ($\left.\mathrm{Me}, p-\mathrm{Bu}^{\prime}\right), 35.0\left(\mathrm{C}, p-\mathrm{Bu}^{\prime}\right), 35.9\left(\mathrm{C}, o-\mathrm{Bu}^{1}\right)$, $69.6\left(\mathrm{CH}_{2}, \mathrm{OEt}\right), 122.9\left(o-\mathrm{C}, \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{O}\right), 139.1\left(p-\mathrm{C}, \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{O}\right)$, $141.4\left(m-\mathrm{C}, \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{O}\right), 152.9\left(\mathrm{OC}, \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{O}\right)$. Mass spectrum (EI): $m / z 358\left(M^{+}-\mathrm{Et}_{2} \mathrm{O}\right)$.

Preparation of $\left[\mathrm{Al}(\mathrm{OEt})\left(\mathrm{OR}^{\prime}\right)_{2}\right]_{2}$ 2.-To a solution of $\mathbf{1}$ (6.26 $\mathrm{g}, 15 \mathrm{mmol}$) in toluene ($70 \mathrm{~cm}^{3}$) potassium ($1.20 \mathrm{~g}, 31 \mathrm{mmol}$) was added. The mixture was refluxed for 1.5 h and then filtered. The solvent was removed in vacuo very slowly to give colourless crystals of $2(0.35 \mathrm{~g}, 8 \%)$, m.p. $196^{\circ} \mathrm{C}$ (Found: C, $74.8 ; \mathrm{H}, 10.5$. Calc. for $\mathrm{C}_{76} \mathrm{H}_{126} \mathrm{Al}_{2} \mathrm{O}_{6}$: C, 76.72; H, 10.67%). IR (Nujol): v 1236w, 1118s, 1018vs, $926 \mathrm{~s}, 873 \mathrm{vs}, 776 \mathrm{~s}, 727 \mathrm{w}, 630 \mathrm{vs}, 521 \mathrm{w}$ and $447 \mathrm{w} \mathrm{cm}^{-1}$. NMR: $\delta_{\mathrm{H}}\left(250 \mathrm{MHz}, 25^{\circ} \mathrm{C}, \mathrm{C}_{6} \mathrm{D}_{6}, \mathrm{SiMe}_{4}\right) 1.25$ ($3 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2} \mathrm{Me},{ }^{3} J_{\mathrm{HH}} 7.0$), $1.39\left(18 \mathrm{H}, \mathrm{s}, p-\mathrm{Bu}^{\mathrm{t}}\right), 1.45(36 \mathrm{H}$,

Table 5 Atomic coordinates ($\times 10^{4}$) for 2

Atom	x	y	z
$\mathrm{Al}(1)$	4 412(1)	9871(1)	9 223(1)
O(1)	3821 (2)	$8328(2)$	8 536(1)
O(2)	$4337(2)$	11 265(2)	8 957(1)
$\mathrm{O}(3)$	$3801(2)$	9 366(2)	10 059(1)
C(1)	$2387(4)$	8 248(3)	10090 (2)
C(2)	$2187(4)$	$6814(4)$	$9725(2)$
C(11)	3 556(3)	7780 (3)	$7762(2)$
C(12)	4 530(4)	$7322(3)$	$7484(2)$
C(13)	4 492(4)	7 098(3)	$6718(2)$
C(14)	$3460(4)$	$7228(4)$	6 204(2)
C(15)	$2375(4)$	7416 (4)	6479 (2)
C(16)	$2328(4)$	$7651(3)$	7 244(2)
C(121)	5 574(4)	$6977(3)$	7 988(2)
C(122)	$6892(4)$	8 294(4)	8 531(2)
C(123)	$6215(4)$	$6176(4)$	7 518(2)
C(124)	4 656(4)	$5989(4)$	8 424(2)
C(141)	3 548(4)	7 076(5)	5 372(2)
C(142)	3 321(8)	5 623(6)	$5009(2)$
C(143)	2 396(6)	$7337(7)$	4 923(2)
C(144)	5 088(6)	$8147(7)$	$5344(3)$
C(161)	840(4)	7 510(4)	$7402(2)$
C(162)	-256(4)	5 936(4)	7150 (2)
C(163)	870(4)	$8071(4)$	8 218(2)
C(164)	228(4)	8 255(4)	$6939(2)$
C(21)	3 701(3)	$11611(3)$	8364 (2)
C(22)	4 336(4)	11 794(3)	$7735(2)$
C(23)	3 504(4)	$11921(3)$	$7112(2)$
C(24)	$2178(4)$	11960 (3)	$7098(2)$
C(25)	$1723(4)$	11990 (3)	7771 (2)
C(26)	2470 (3)	$11861(3)$	8419(2)
C(221)	5 931(4)	12 043(3)	7 727(2)
C(222)	$7007(4)$	13 305(4)	8 406(2)
C(223)	6 400(4)	12 426(4)	7016 (2)
C(224)	$6147(4)$	10 763(4)	$7752(2)$
C(241)	1263 (4)	12 074(4)	6 407(2)
C(242)	$1914(6)$	11 993(6)	$5726(2)$
C(243)	$1212(5)$	13 457(4)	$6605(2)$
C(244)	-334(5)	10 883(5)	6 201(2)
C(261)	$2025(4)$	12 199(3)	9163 (2)
C(262)	848(4)	12 710(4)	$9075(2)$
C(263)	$1381(4)$	$10967(4)$	9 506(2)
C(264)	$3407(4)$	13 427(4)	$9725(2)$

s, $\left.o-\mathrm{Bu}^{\prime}\right), 4.55\left(2 \mathrm{H}, \mathrm{q}, \mathrm{CH}_{2} \mathrm{Me},{ }^{3} J_{\mathrm{HH}} 7.0 \mathrm{~Hz}\right) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}$, $25^{\circ} \mathrm{C}, \mathrm{C}_{6} \mathrm{D}_{6}, \mathrm{SiMe}_{4}$), 18.2 (Me, OEt), 31.9 (Me, $p-\mathrm{Bu}^{\prime}$), 33.4 $\left(\mathrm{Me}, o-\mathrm{Bu}^{\mathrm{l}}\right), 34.7\left(\mathrm{C}, p-\mathrm{Bu}^{\mathrm{t}}\right), 36.3\left(\mathrm{C}, o-\mathrm{Bu}^{\mathrm{t}}\right), 64.8\left(\mathrm{CH}_{2}, \mathrm{OEt}\right)$, $122.8\left(o-\mathrm{C}, \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{O}\right), 138.0\left(p-\mathrm{C}, \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{O}\right), 140.2(m-\mathrm{C}$, $\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{O}$), $153.9\left(\mathrm{OC}, \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{O}\right)$. Mass spectrum (EI): $m / z 1189$ $\left(M^{+}\right)$.

Crystal Structure Determinations of 1 and 2.-Data were collected at $-120^{\circ} \mathrm{C}$ on a Stoe AED 2 (revision 6.2) fourcircle diffractometer. Monochromated Mo-K α radiation ($\lambda=$ $0.71073 \AA$) was used and semi-empirical absorption corrections employed. The structures were solved by direct methods (SHELXS $86{ }^{16}$) and refined against F^{2} using SHELXL 92. ${ }^{17}$ All non-hydrogen atoms were refined anisotropically. For the hydrogen atoms a riding model was used.

The crystallographic details for compounds 1 and 2 are summarized in Table 3 and atomic coordinates in Tables 4 and 5 respectively.

Additional material available from the Cambridge Crystallographic Data Centre comprises H -atom coordinates, thermal parameters and remaining band lengths and angles.

Acknowledgements

We thank the Deutsche Forschungsgemeinschaft, the Volkswagon Stiftung and the Fonds der Chemischen Industrie for financial support of this work.

References

1 E. A. Jeffrey and T. Mole, Aust. J. Chem., 1968, 21, 2683; T. Mole and E. A. Jeffrey, Organoaluminium Compounds, Elsevier, Amsterdam, 1972.
2 M. D. Healy, M. B. Power and A. R. Barron, Coord. Chem. Rev., 1994, 130, 63.
3 U. Giannini, E. Albizzati and S. Parodi, Ger. Offen., DE 2630585, 1977.

4 S. Iguchi, H. Nakai, M. Hayashi and H. Yamamoto, J. Org. Chem., 1979, 44, 1363; S. Sakane, J. Fujiwara, K. Maruoka and H. Yamamoto, J. Am. Chem. Soc., 1983, 105, 6154; K. Maruoka, T. Itoh and H. Yamamoto, J. Am. Chem. Soc., 1985, 107, 4573.

5 Catalytic Polymerization of Olefins, eds. T. Keii and K. Soga, Elsevier, New York, 1986.
6 S. D. Ittel, R. Mulhaupt, A. P. Shreve and U. Klabunde, in Homogeneous and Heterogeneous Catalysis, eds. Y. Yermakov and V. Likholobov, VNU Press, Utrecht, 1986, p. 431.

7 B. L. Goodall, in Transition Metal Catalyzed Polymerizations, ed. R. P. Quirk, Harwood Academic, New York, 1983, p. 355.
8 A. W. Langer, jun., US Pat. 4410750 A, 1983; 4434313 A, 1984.
9 M. D. Healy, J. W. Ziller and A. R. Barron, Organometallics, 1992, 11, 3041.

10 S. Schulz, H. W. Roesky, H. J. Koch, G. M. Sheldrick, D. Stalke and A. Kuhn, Angew. Chem., 1993, 105, 1828; Angew. Chem., Int. Ed. Engl. 1993, 32, 1729.
11 W. Uhl and A. Vester, Z. Anorg. Allg. Chem. 1990, 589, 175; W. Uhl, Angew. Chem., 1993, 105, 1449; Angew. Chem., Int. Ed. Engl., 1993, 32, 1386.
12 R. Kumar, M. L. Sierra, V. S. J. de Mel and J. P. Oliver, Organometallics, 1990, 9, 484.
13 M. R. Mason, J. M. Smith, S. G. Bott and A. R. Barron, J. Am. Chem. Soc., 1993, 115, 4971.
14 A. P. Shreve, R. Mulhaupt, W. Fultz, J. Calabrese, W. Robbins and S. D. Ittel, Organometallics, 1988, 7, 409.

15 B. Cetinkaya, I. Gümrükcü and M. F. Lappert, J. Am. Chem. Soc., 1980, 102, 2086.
16 G. M. Sheldrick, SHELXS 86, Program for crystal structure determination, University of Gottingen, 1986.
17 G. M. Sheldrick, SHELXL 92, University of Göttingen, 1992.

[^0]: \dagger Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1995, Issue 1, pp. xxv-xxx.

